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Nuclear structure refers to the arrangement and behaviour of protons and neutrons (collectively 
known as nucleons) within the atomic nucleus. The study of nuclear structure is fundamental to 
understanding how atomic nuclei behave, their stability, and the interactions that govern 
nuclear reactions. The key factors influencing nuclear structure include:

1.Nucleon-Nucleon Interactions: Protons and neutrons interact through the nuclear force, 

which binds them together. These interactions are complex, involving both short-range 
attractive forces and long-range repulsive forces.
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2. Shell Model: This is a simple, yet powerful, model for describing the 
structure of the nucleus. It treats protons and neutrons as moving in discrete 
energy levels or shells, much like electrons in atomic shells. The shell model 
helps explain the stability of certain isotopes and the properties of the nucleus, 
such as spin and parity.

3.Collective Model: This model describes the nucleus as a system that can 
exhibit collective behavior, like rotations and vibrations, due to the collective 
motion of nucleons. It accounts for phenomena such as nuclear deformation 
(spherical, prolate, or oblate shapes) and nuclear excitations.

4.Deformation and Shape: Nuclei may not be spherical; they can take on 
prolate (elongated) or oblate (flattened) shapes. This deformation is particularly 
important for heavier nuclei and can lead to unique phenomena such as nuclear 
rotations.
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5. Pairing and Collective Excitations: In certain nuclei, pairs of 
protons or neutrons interact in a correlated way, leading to collective 
excitations. These correlations are a key feature in nuclear structure 
and can result in behaviors such as superfluidity and the formation of 
collective vibrational states.

Interacting Boson Model (IBM):

The IBM is a theoretical framework used to describe the collective 
aspects of nuclear structure, particularly the low-energy excitations 
in atomic nuclei. It was developed by F. Iachello and A. Arima in the 
1970s. The IBM has become an essential tool for understanding 
collective motion, such as vibrations and rotations, in even-even 
nuclei (nuclei with an even number of protons and neutrons).
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1.Key Concepts of the IBM:

Boson Representation: The IBM treats nucleons (protons and neutrons) 
as collective excitations that can be represented by bosons. A boson is a 
particle that obeys Bose-Einstein statistics, and in the IBM, the nucleons 
are approximated as bosonic pairs. These pairs can be of two types:
S-bosons: These represent pairing of nucleons in the s-state (orbital 
angular momentum L=0).
D-bosons: These represent pairing of nucleons in the d-state (orbital 
angular momentum L=2).
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2. Hamiltonian: The dynamics of the IBM are described by an effective 
Hamiltonian that includes terms representing the interactions between the 
bosons. These interactions can be modeled by terms such as:
Boson-boson interaction: Describes the attractive forces between pairs of 
nucleons, leading to collective motion.
Single-particle excitations: Models the transition between different collective 
states.

3. Symmetry Groups: The IBM uses group theoretical methods to classify 
nuclear states. The two main symmetries in the IBM are:
U(6) Symmetry: This is the fundamental symmetry group of the IBM, 
describing the full space of bosonic configurations.
SU(3) Symmetry: For certain nuclei, the IBM can reduce to SU(3) symmetry, 
which describes the rotational behavior of deformed nuclei. This symmetry is 
often associated with the rotation of a deformed, ellipsoidal shape of the 
nucleus.
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4. Phases of Nuclear Collective Motion: 
The IBM describes various phases of nuclear collective motion:

U(5) limit: This corresponds to spherical nuclei and represents a 
vibrational model where the nucleus undergoes collective vibrational 
excitations.

SU(3) limit: This corresponds to prolate or oblate deformed nuclei and 
represents a rotational model where the nucleus undergoes collective 
rotational motion.

O(6) limit: This corresponds to nuclei with soft shapes, where the 
transition between vibrational and rotational modes is more flexible.
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Interacting boson approximation

Dominant interaction between nucleons has pairing 
character  two nucleons form a pair with angular 
momentum J=0 (S pair).

Next important interaction between nucleons with 
angular momentum J=2 (D pair).

Approximation: Replace S and D fermions pairs by s and 
d bosons. Argument:

 

ˆ S , ˆ S + =1−
ˆ n 


1while s,s+ =1
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Microscopy of IBM

In a boson mapping, fermion pairs are represented as 
bosons:

Mapping of operators (such as Hamiltonian) should take 
account of Pauli effects.

Two different methods by

requiring same commutation relations;

associating state vectors.

 

s+  ˆ S +   j a j

+  a j

+( )
0

0( )

j
 , d

+  ˆ D 
+   jj ' a j

+  a j '

+( )


2( )

jj '


T. Otsuka et al., Nucl. Phys. A 309 (1978)  1
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The interacting boson model

Describe the nucleus as a system of N interacting s and d 
bosons. Hamiltonian:

Justification from

Shell model (SM): s and d bosons are associated with S and D 
fermion (Cooper) pairs.

Geometric model (GM): for large boson number the IBM 
reduces to a liquid-drop Hamiltonian.

 

ˆ H IBM = ibi

+bi

i=1

6

 +  ijklbi

+b j

+bkbl

ijkl=1

6



A. Arima & F. Iachello, Ann. Phys. (NY) 99 (1976) 253; 111 (1978) 201; 123 (1979) 468 
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U(6) algebra and symmetry

Introduce 6 creation & annihilation operators:

The hamiltonian (and other operators) can be written in 
terms of generators of U(6):

The harmonic hamiltonian has U(6) symmetry

Additional terms break U(6) symmetry.

 

bi

+,i =1, ,6 = s+,d−2

+ ,d−1

+ ,d0

+,d+1

+ ,d+2

+ , bi = bi

+( )
+

 

bi

+b j ,bk

+bl = bi

+bl jk − bk

+b jil

 

ˆ H U(6) = E0 + bi

+bi

i=1

6

  ˆ H U(6),bi

+b j = 0
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The IBM Hamiltonian

Rotational invariant Hamiltonian with up to N-body 
interactions (usually up to 2):

The single-boson energies  and boson-boson interactions  is the 
IBM Hamiltonian are solvable.

This problem is equivalent to the enumeration of all 
algebras G satisfying

 

ˆ H IBM = E0 + s
ˆ n s + d

ˆ n d +  l1l2  l 1  l 2

L bl1

+  bl2

+( )
L( )

 ˜ b  l 1
 ˜ b  l 2( )

L( )

l1l2  l 1  l 2 ,L



 

U 6( ) G  SO 3( ) ˆ L  = 10 d+  ˜ d ( )


1( )

 

12



A. N. Mitra Memorial Lecture, April 14, 

15, 2025

Dynamical symmetries of the IBM

U(6) has the following subalgebras:

Three solvable limits are found: 
 

U 5( )= d+  ˜ d ( )


0( )
, d+  ˜ d ( )



1( )
, d+  ˜ d ( )



2( )
, d+  ˜ d ( )



3( )
, d+  ˜ d ( )



4( )

 
SU 3( )= d+  ˜ d ( )



1( )
, s+  ˜ d + d+  ˜ s ( )



2( )
− 7

4
d+  ˜ d ( )



2( )

 
SO 6( )= d+  ˜ d ( )



1( )
, s+  ˜ d + d+  ˜ s ( )



2( )
, d+  ˜ d ( )



3( )

 
SO 5( )= d+  ˜ d ( )



1( )
, d+  ˜ d ( )



3( )

 

 

U 6( )

U 5( ) SO 5( )
SU 3( )

SO 6( ) SO 5( )

 

 
 

 
 

 

 
 

 
 

 SO 3( )
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Dynamical symmetries of the IBM

The general IBM Hamiltonian is

An entirely equivalent form of HIBM is

The coefficients  and  are certain combinations of the coefficients  and .

 

ˆ H IBM = E0 + 0
ˆ C 1 U 6( ) + 1

ˆ C 1 U 5( ) +   0
ˆ C 1 U 6( )  ˆ C 1 U 5( ) 

+ 0
ˆ C 2 U 6( ) + 1

ˆ C 2 U 5( ) + 2
ˆ C 2 SU 3( ) 

+ 3
ˆ C 2 SO 6( ) + 4

ˆ C 2 SO 5( ) + 5
ˆ C 2 SO 3( ) 

 

ˆ H IBM = E0 + s
ˆ n s + d

ˆ n d +  l1l2  l 1  l 2

L bl1

+  bl2

+( )
L( )

 ˜ b  l 1
 ˜ b  l 2( )

L( )

l1l2  l 1  l 2 ,L


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The solvable IBM Hamiltonians

Excitation spectrum of HIBM is determined by

If certain coefficients are zero, HIBM can be written as a 
sum of commuting operators:

 

ˆ H IBM = 1
ˆ C 1 U 5( ) + 1

ˆ C 2 U 5( ) + 2
ˆ C 2 SU 3( ) 

+ 3
ˆ C 2 SO 6( ) + 4

ˆ C 2 SO 5( ) + 5
ˆ C 2 SO 3( ) 

 

ˆ H 
U 5( ) = 1

ˆ C 1 U 5( ) + 1
ˆ C 2 U 5( ) + 4

ˆ C 2 SO 5( ) + 5
ˆ C 2 SO 3( ) 

ˆ H 
SU 3( ) = 2

ˆ C 2 SU 3( ) + 5
ˆ C 2 SO 3( ) 

ˆ H 
SO 6( ) = 3

ˆ C 2 SO 6( ) + 4
ˆ C 2 SO 5( ) + 5

ˆ C 2 SO 3( ) 
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The U(5) vibrational limit

U(5) Hamiltonian:

Energy eigenvalues:

 

ˆ H 
U 5( ) =  ˆ n d + cL

1

2

L= 0,2,4

 d+  d+( )
L( )

 ˜ d  ˜ d ( )
L( )

 

E nd ,,L( )=  nd + 1nd nd + 4( )+ 4  + 3( )+ 5L L +1( )

with

1 =
1

12
c0

4 = −
1

10
c0 +

1

7
c2 −

3

70
c4

5 = −
1

14
c2 +

1

14
c4
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The features of SU(5) limit: 
    [Iachello and Arima, (1987) and Iachello and Arima (1976)]

a) The triplet of 02
+, 22

+, 41
+ states in neighbourhood of twice the energy 

of the first excited 2+ state (=E2g
+).

b) The quadrupole moment of the first excited state, denoted as Q(2g
+)= 

0.
c) The energy ratio R42 (= E4g

+ /E2g
+)= 2.0  

d) The γ-band exhibits a staggering pattern in its energy levels with 
states like 2γ+, (3γ+, 4γ+), (5γ+, 6γ+), and so on. In contrast, the tri-axial 
rotor with an asymmetry parameter (γ0) displays a different staggering 
pattern with states like (2γ+, 3γ+), (4γ+, 5γ+), and so on.
e)Two nuclei that serve as excellent examples of SU(5) type nuclei are 
64Zn and 76Se.
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The U(5) vibrational limit

Anharmonic vibration spectrum associated with the quadrupole 
oscillations of a spherical surface.

Conserved quantum numbers: nd, , L.

A. Arima & F. Iachello, Ann. Phys. (NY) 99 (1976) 253

D. Brink et al., Phys. Lett. 19 (1965) 413
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The SU(3) rotational limit

SU(3) Hamiltonian:

Energy eigenvalues:

 

ˆ H 
SU 3( ) = a ˆ Q   ˆ Q  + b ˆ L  ˆ L 

 

E ,,L( )= 2 2 + 2 + 3 + 3 + ( )+ 5L L +1( )

with

2 =
1

2
a

5 = b −
3

8
a
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The SU(3) rotational limit

Rotation-vibration spectrum of quadrupole oscillations of a 
spheroidal surface.

Conserved quantum numbers: (,), L.
A. Arima & F. Iachello,

Ann. Phys. (NY) 111 (1978) 201

A. Bohr & B.R. Mottelson, Dan. Vid.

Selsk. Mat.-Fys. Medd. 27 (1953) No 16
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The features of the SU(3) limit: 
[Iachello & Arima (1987) and (1978)]
 

A) The energy ratio R42 = 10/3.

B) The energy gap between the two neighbouring levels of the ground state 

rotational band and the β-vibrational band remains consistent.

C) The energy levels of states with identical spin values (I) are equivalent for 

both the γ-vibrational and β-vibrational bands. This means that these γ- and β- 

bands exhibit degeneracy for the same spin states.

D) There exist many bands with different properties: the ground state 

rotational (g-)band with Kπ =01
+, the β-vibrational band with Kπ =02

+, the γ-

vibrational band with Kπ =21
+, the β2-vibrational band with Kπ =03

+, the βγ-

vibrational band with Kπ =22
+, +, the γγ-vibrational band with Kπ =41

+, etc.

E) The band mixing parameter Zγ, which relates to the B(E2) values between 

the γ-band and the g-band, has a value of zero.

F) The ratio of B(E2; 0β
+→2g

+) / B (E2; 2γ
+→0g

+) = 1/6. 

G) The ratio of B(E2; 2γ
+→0g

+) / B (E2; 2g
+→0g

+) = 0.
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The SO(6) -unstable limit
SO(6) Hamiltonian:

Energy eigenvalues:

 

E ,,L( )= 3 N N + 4( )−  + 4( ) + 4  + 3( )+ 5L L +1( )

with

3 =
1

4
a

4 =
1

2
b

5 = −
1

10
b + c

 

ˆ H 
SO 6( ) = a ˆ P +  ˆ P + b ˆ T 3  ˆ T 3 + c ˆ L  ˆ L 

22
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The SO(6) -unstable limit

Rotation-vibration spectrum of quadrupole oscillations of a -unstable 

spheroidal surface.

Conserved quantum numbers: , , L.

A. Arima & F. Iachello, Ann. Phys. (NY) 123 (1979) 468

L. Wilets & M. Jean, Phys. Rev. 102 (1956) 788
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In the O(6) limit, the nuclei exhibit the following 

characteristics:

A)The ground state (g-) band is denoted as |N, σ = N, τ, L = 2τ >.

B)The γ- band exhibits an energy level pattern that shows staggering, with 

states like 2γ+, (3γ+, 4γ+), (5γ+, 6γ+), and so on. In contrast, the tri-axial 

rotor with the asymmetry parameter (γ0) displays a different staggering pattern, 

with states like (2γ+, 3γ+), (4γ+, 5γ+), and so on.

C)The β- band follows a sequence of 0+(τ=3) - 2+(τ=4) - 2+(τ=5) with 

significant energy gaps between these states.

D)The 0β
+ state is positioned at a lower energy level than the 3γ+ state.

E)The operator E(2), represented by Q2(χ = 0), follows a selection rule: Δσ = 0, 

Δτ = ±1. Consequently, the 0β
+ state tends to decay primarily to the 22

+ state.

F) The 134Ba and 196Pt are the most notable instances of nuclei that adhere to 

the O(6) limiting type characteristics.

G)The energy ratio R42 = 2.5.

     [Iachello & Arima (1987) and (1979)]
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Applications of IBM
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The Ratio R42

26

In even Z even N nuclei, the energy ratio R42 (=E4g
+/E2g

+) is good measure of deformation and it helps in 

categorizing the atomic nuclei. For vibrational or SU(5), E(5) symmetry,  γ-soft nuclei or SO(6), X(5) 

symmetry  and  rotational or SU(3)  type nuclei  the value of  R4  is 2.0, 2.2, 2.5, 2.9 and 3.33, respectively. 



Casten (2006)
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SYMMETRY TRIANGLE FOR NUCLEAR STRUCTURE.
 
(a) Showing the traditional paradigms at the vertices (along with mini-level schemes), and the 
two critical point symmetries, E(5) and X(5), at the termini of the phase-transitional region 
between spherical and deformed nuclei. Note that there are two systems for labelling these 
paradigms: the geometric language of vibrator, rotor, γ-soft, E(5), and X(5), which are solutions 
to the Bohr Hamiltonian, and symmetry-based labels from the IBA (U(5), SU(3) and O(6)). This 
distinction should be borne in mind and is the reason, for example, that E(5) and X(5) are shown 
in open circles, to distinguish them from the dynamical symmetries at the vertices. Also, even 
solutions such as U(5) and the vibrator, which appear in both algebraic and geometric 
approaches, although similar, are not identical.

(b) Extended triangle incorporating oblate shapes interpreted according to Landau 
theory. t represents a nuclear triple point.
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The Interacting Boson Model and Calculations
The two body effective Hamiltonian for a system of s- and d- bosons can be written as Eq.1:
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In above Eq. (1), E0 is the core energy; ɛ’
s and ɛ

’
d are the binding energies of s and d bosons energies; cL , 

ṽ L and uL describe the two-boson interaction.  Another form of Hamiltonian is:

H’= ɛ” nd + a0 (P
†.P) + a1 (L.L) + a2(Q.Q) + a3 (T3.T3) + a4(T4.T4)    (2)

where, 

A least square fitting technique is used to find out the optimized values of the four parameters i.e., ɛ”, 

a0, a1 and a2; while a3 = a4 =0, for a nucleus lies on SU(5) to SU(3) transition in Eq. (2). The PHINT 

programme (Scholten, 1979a) is used to fit the observed energy spectra of a nucleus.  All levels with 

reliable spin assignment (Iл < 10+) are to be included up to the point that the first level with an 

uncertain spin assignment appears.  In fitting of the energy spectra, we first determine the four 

parameters of H’ as discussed above, that reproduce the best lower and higher bands.

)0(

0
])2()

~~
()2()

††
()2()~~

()2()
††

[(
2

~

2

1)0(

0
])()

~~
()()

††
[()12()2/1(

4,2,0

)
~

.
†

(')~.
†

('

0
dxdxsxdsxdxxddvLdxdLdxd

L
cL

L

dd
s

ss
s

EH +++

=

+++= 

)0(
0

])0()~~()0()
††

[(
2

1)0(
0

])2()~~
()2()

††
[(2

)0(
0

])0()
~~

()0()††()0()~~()0()††[(
0

~

2

1
0

sxsxsxsusxdxsxdudxdsxssxsdxdv ++++



The optimized values of these four boson- boson interaction parameters with E2SD (= α2) and 

E2DD (= √5β2) are the input for the FBEM programme (Scholten, 1979b). The E2 transition 

operator depends upon two parameters α2 and  β2 as given below:

 T(E2) = α2 [d† + s† ](2)  + β2[d† ](2) 

where, α2 is called the boson effective charge, simply the scaling parameter and affecting the 

B(E2) values and  β2 accounts for nuclear shape transition.  The ratio E2DD/ E2SD =2.958 in 

the SU(3) limit and reduced to zero in the O(6) limit. The FBEM program (Scholten, 1979b) 

gives the B(E2) values and ratios.

-------------------------------------------
A. Arima and F. Iachello , Advances in Nuclear Physics, edited by J. W. Negela and E. Vogts (Plenum 

Press, New York), Vol. 13, 1984.

F. Iachello and A. Arima, The Interacting Boson Model (Cambridge University Press, Cambridge), 1987.

R. F. Casten, Nuclear Structure from a Simple Perspective, (Oxford University Press, New York) 1990. 

O. Scholten, Programme PHINT, KVI internal report 63 (1979a).

O. Scholten, Programme FBEM, KVI internal report 63 (1979b).
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Old References:
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 Sr. 

No 

Nuclear Observable  Nucleus Model Authors Reference 

1 E (g-, β-, γ- bands) 

 

B(E2) ratios 

102Ru, 110Cd, 
188Pt, 110Pd 
124-132 Xe 

IBM-1 

SU(5) 

Arima and 

Iachello 

Annals of 

Physics 99 

(1976) 253 

2 E (g-, β-, γ- bands) 

 

156Gd, 170Er, 
234U 

IBM-1 
SU(3) 

Arima and 

Iachello 

Annals of 

Physics  111 

(1978) 201 

3 E (g-, β-, γ- bands) 

B(E2; 21 →01), 

B(E2; 41 →21), 

B(E2; 22 →01),  

B(E2; 23 →01), 

Q21 

B(E2; 41 →21)/ 

B(E2; 21 →01), 

B(E2; 22 →01/21), 

B(E2; 22 →41/21), 

B(E2; 23 →01/21), 

B(E2; 22 →21/41), 

B(E2; 31 →21/41), 

Isomer shifts δ<r2 > 

E0 matrix elements, 

E2/M1 mixing ratios 

g-factors (g21) 
B(E4), etc 

146-156Sm IBM-1 
SU(5) to 
SU(3) 

Scholten 

and 

Iachello 

Annals of 

Physics   115 

(1978) 325 

4 E (g-, β-, γ- bands) 

B(E2) values 

132Ba, 196Pt 
194Pt 

IBM-1 

O(6) 

Arima and 

Iachello 

Annals of 

Physics  123 

(1979) 468 

5 E2/M1 ratios 146-152Sm,  
152-156Gd, 
162Dy,  
162-168Er, 
172Yb, 190Os 

IBM-1 Lipas et 

al., 

NPA 469 (1987) 

348 



New References:
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6 B (E2; 01 →21),

Isomer shifts δ<r2> = 

<r2>21 -  <r2>01

148-154Sm
152-160Gd

Mesoscopic 

Systems, 

IBM

Iachello 

and Zamfir

PRL 92(21) 

(2004) 212501-1

7 E (g-, β-, γ- bands)

B(E2) values, Q

100Mo IBM-1 Ghafoor 

and Shawn

JUBPAS 31(2) 

(2023) 176

8 E (g-, β-, γ- bands)

B(E2) values, Q

164−184Os IBM-1 Gupta- 

Katoch- 

Sharma

NPA 1041 (2024) 

122765

9 E (g-, β-, γ- bands)

B(E2) values, Q

W 

(N=86–118) 

IBM-1 Gupta- 

Katoch- 

NPA 1057 (2025) 

123032



Partial Energy level spectrum of N = 96-108Os in EXPT and IBM-1.
[Gupta- Katoch -Sharma, NPA 1041 (2024) 122765]

The B(E2) Values in IBM
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Variation of B(E2) ratios for Os

[Gupta- Katoch -Sharma, NPA 1041 (2024) 122765]
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The B(E2; 2γ→2g/4g) vs. N. Fitted parameters (in 

keV). EPS=Ɛ, QQ=2k, ELL=k’, PAIR=k”/2.

The MULT form of the IBM-1

Hamiltonian consists of 4 terms :

HIBM = Ɛ nd + k Q.Q + k’L.L + k” P.P

In PHINT package, Ɛ = EPS, 2k = QQ, k’ = 
ELL, k”/2 = PAIR . 

N EPS QQ ELL PAIR

96 479.1 -16.4 1.7 2.7

98 458 -19.7 8.1 8.0

100 443 -20.0 11.2 8.6

102 436 -18.0 14.1 10.3

104 368 -16.5 20.5 10.0

106 353 -18.7 27.8 20.5

108 321.4 -22.7 19.8 20.2

The IBM-1 is used to reproduce the β- and γ-
bands. The IBM-1 parameters used are given. 
The inter band B(E2) ratios in IBM-1 are 
compared with experiment  Thus our 
presentation gives a detailed description of 
these Os isotopes, and high light their special 
spectral features. These spectra are similar to 
those of W and Hf nuclei in quadrant-2. The 

N=96-108 Os isotopes display the rich 

structure of ground-, β- and γ- bands. The 

N=100 176Os is X(5) nucleus, beyond which a 

saturation of deformation is observed. The β- 

band is low and lies below the γ- band. All 

these Os isotopes are prolate shaped. 35
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Thank you.
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